VFPS Watch Dog Module

Preliminary !

A.Barduhn, J. Schütt, R. van Staa Universität Hamburg Institut für Experimentalphysik October 2003

Content

- Introduction Block Diagram CAN Higher Level Protocol Appendix 1) Jumpers
- 2) Board Layout
- 3) Rotary Switches
- 4) Front Panel
- 5) Switch Numbers for H1 Forward Proton Spectrometer
- 6) VFPS Watch Dog Supervision System

Introduction

The main purpose of the VFPS Watch Dog Module is to supervise the experiment computer, which moves the Roman Pots via step motors and reads their position via Heidenhain linear encoder. The Watch Dog is connected to the computer by CAN bus and expects to be repeatedly triggered with a given maximum time difference between two triggers. If a time-out condition occurs, all Roman Pots are moved out to their end position. Therefore it is assured, that in case of a computer hang-up or a CAN bus malfunction the Roman Pots are retracted out of the beam to a safe position. A block diagram of the VFPS Watch Dog Supervision System is given in Appendix 6.

The Module has been designed as VME Board of 6 height units, which uses connector P1 only for power supply.

Block Diagram

Fig.1 shows a block diagram of the Watch Dog Module. Main Part of the circuit is a micro controller of type PIC18F448 (Microchip) with integrated CAN interface. It is connected to the CAN bus by a dedicated driver chip PCA82C250 (Philips).

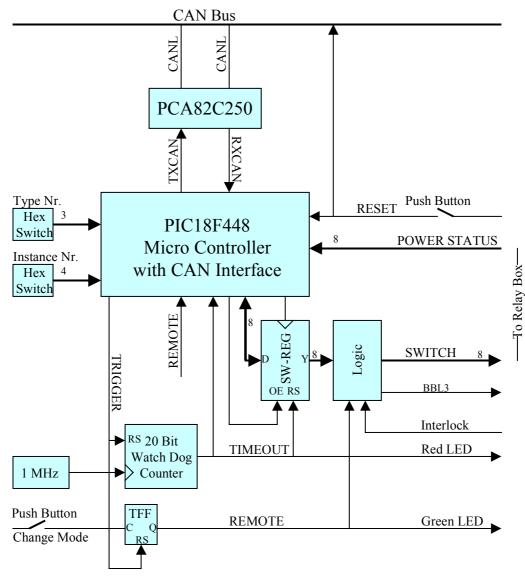


Fig. 1: VFPS Watch Dog Block Diagram

The Watch Dog function has been realised by a 20 bit counter, which is incremented by a 1 MHz oscillator and reset by the trigger signal **TRIGGER**. So time intervals between

 2μ sec and $1 \sec$ can be configured by firmware. The trigger signal is issued by the micro controller after receiving the corresponding command via CAN Bus.

The overflow condition of the counter sets the **TMEOUT** flag, which resets all bits in the Switch Register **SW-REG**. It is displayed by a red LED at the front panel.

The **SWITCH** output level depend on the actual operation mode, which can be toggled by means of a push button **Mode** on the front panel. In **Local** Mode all **SWITCH** level are set to **on**. In **Remote** mode (green LED on the front panel is on) the **SWITCH** output is determined by the Switch Register. In case of no time-out each bit of that register can be set individually via the CAN bus. The **Remote** mode is forced by each **Trigger** signal. A potential free switched output signals the alarm state to the H1 BBL3 system.

Additionally an input for the common H1 BBL3 system has been implemented. An Interlock signal in case of a BBL3 alarm resets all bits in the Switch Register and forces the module to **Remote** mode. So by a time-out condition or by an Interlock signal, all **SWITCH** level are reset and remain off, until they are set again via CAN bus after disappearance of the alarm condition.

Another push button **RESET** generates a reset signal, which is applied to the micro controller and - via private part of the CAN bus cable – to the VFPS Heidenhain Read-out modules and the VFPS Temperature Monitor.

The seven most significant bits of the CAN Identifier can be selected by two hexadecimal rotary switches **Type Nr.** and **Instance Nr.** For more details see the following chapter.

CAN Higher Level Protocol

For computer access the widely used CAN bus interface has been implemented. Devices connected to a CAN bus have to follow a so called CAN Higher Level Protocol, which includes the Baud rate and the Identifier definition. For the Watch Dog Module the following parameters are fixed by firmware:

- Baud Rate: 125 kHz
- Identifier: 11 Bit Standard: ID10..ID0
 - Identifier Definition: Device Type: ID10..ID8 Device Instance: ID7..ID4
 - Device Function: ID3..ID0

The Device Type (3 bits) and the Instance Number (4 bits) are selected on the board by means of two rotary switches.

Three functions are defined:

- Function F1: Trigger Watch Dog
- Function F2: Switch Relays
- Function F3: Read Status
- All messages are data messages (RTR Bit = 0) with at least one data byte (argument).

The controller responds to the requests by sending a data message with an identifier, containing the same Type Number and Instance Number, and the Function Number incremented by 8.

In the following the functions and the controllers response are described in more detail.

Function F1: Trigger Watch Dog

Identifier	RTR	DLC	Byte 1	Function
\$TI1	0	1	1	Trigger Watch Dog

T: Type Number (3 Bit)

I: Instance Number (4 Bit)

Function F1 generates the following response:

F1(1) Trigger Watch Dog:								
Identifier	RTR	DLC	Byte 1	Byte 2				
\$TI9	0	2	1	Status				
Status:	ST0:	REM	OTE					

ST1: TIMEOUT

The Status Byte reflects the status **before** the Trigger is issued.

Identifi	er	RTR	DLC	Byte 1	Function
\$TI2		0	1	1	Read CAN Error
\$TI2		0	1	2	Read Firmware Version Number

Function F2: Read CAN Parameter

T: Type Number (3 Bit)

I: Instance Number (4 Bit)

Function F2 generates the following response:

F2(1) Read CAN Error:									
Identifier	RTR	DLC	Byte 1	Byte 2	Byte 3	Byte 4			
\$TIA	0	4	1	CEB	TEC	REC			

TEC:

C0: Error Warning Bit	(C1 or C2 are set)
C1: Receiver Warning Bit	(95 < REC < 128)
C2: Transmitter Warning Bit	(95 < TEC < 128)
C3: Receiver Bus Passive Bit	(127 < REC)
C4: Transmitter Bus Passive Bit	(127 < TEC)
C5: Transmitter Bus Off Bit	(255 < TEC)
C6: Receiver Buffer 1 Overflow Bit	
C7: Receiver Buffer 0 Overflow Bit	
Transmitter Error Counter	

REC: Receiver Error Counter

For more details of the CAN error handling please consult the CAN Bus Specification manual (CAN Specification, Version 2.0, Robert Bosch GmbH, 1991).

F2(2) Read Firmware Version Number:

Identifier	RTR	DLC	Byte 1	Byte 2	Byte 3
\$TIA	0	3	2	VNH	VNL

VNH:	MS-Byte of Version Number
X 7 N TT	

VNL: LS-Byte of Version Number

Function F3: Switch Relays

Identifier	RTR	DLC	Byte 1	Byte 2	Function
\$TI3	0	2	1	RN	Switch Individual Relay on
\$TI3	0	2	2	RN	Switch Individual Relay off
\$TI3	0	1	3		Switch all Relays on
\$TI3	0	1	4		Switch all Relays off

T: Type Number (3 Bit)

I: Instance Number (4 Bit)

RN: Relay Number $0 \le RN \le 7$

This function has effect only, if there is no time-out condition and no BBL3 alarm. In Local Mode all Switch Level are on.

Function **F3** generates the following response:

Identifier	RTR	DLC	Byte 1	Byte 2	Byte 3	Byte 4	
\$TIB	0	4	1	Status	SREG	PSTA	
Status:	Status Register			0: Local Mode 1: Remote Mode			
			ST_1 :	0: No Ti	me-out		
				1: Time-	out		
SREG:	Switch Level		SL _n :	0: Level #n off			
PSTA:	Powe	er Status	PS _n :	1: Level #n on 0: Power #n off 1: Power #n on			

F3(1) Switch Individual Relay on

F3(2) Switch Individual Relay off

Identifier	RTR	DLC	Byte 1	Byte 2	Byte 3	Byte 4	
\$TIB	0	4	2	Status	SREG	PSTA	

F3(3) Switch all Relays on

Identifier	RTR	DLC	Byte 1	Byte 2	Byte 3	Byte 4
\$TIB	0	4	3	Status	SREG	PSTA

F3(4) Switch all Relays off

Identifier	RTR	DLC	Byte 1	Byte 2	Byte 3	Byte 4
\$TIB	0	4	4	Status	SREG	PSTA

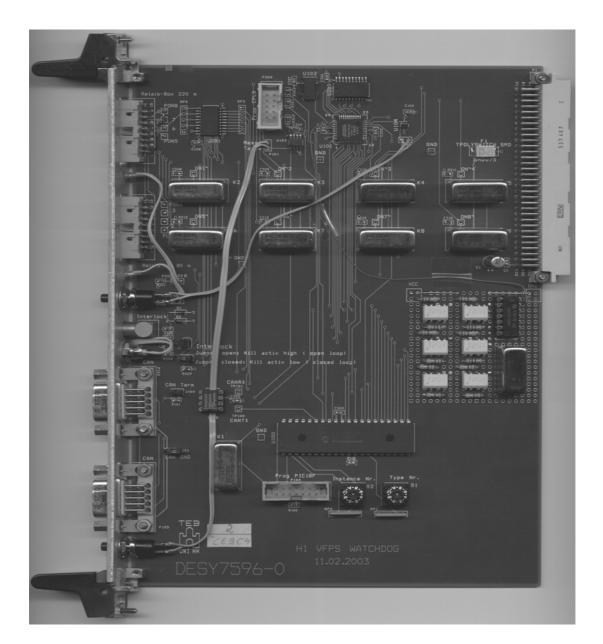
Function F4: Read Status

Identifier	RTR	DLC	Byte 1	Function
\$TI4	0	1	1	Read Status

T: Type Number (3 Bit) I: Instance Number (4 Bit)

Function **F4** generates the following response:

F4(1) Read Status:

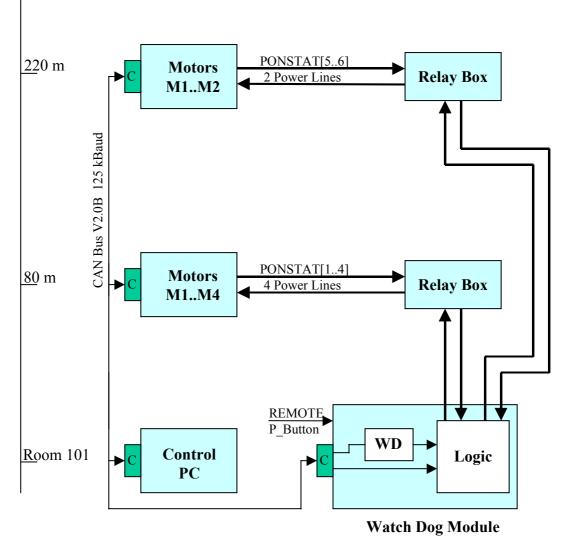

	Identifier	RTR	DLC	Byte 1	Byte 2	Byte 3	Byte 4
	\$TIC	0	4	1	Status	SREG	PSTA
Status:		Status Register		ST ₀ :	0: Local Mode 1: Remote Mode		
				ST ₁ :	0: No Tin	ne-out	
	SREG:	Swite	h Register	SR _n :	0: Relay #	‡n off	
]	PSTA:	Power	r Status	PS _n :	1: Relay #n on 0: Power #n off 1: Power #n on		

Appendix

1) Jumpers						
J100:	CAN Bus Te	rmination				
	The CAN bus has to be terminated at the last node of the bus. The termi- nation is activated by closing jumper J100.					
J101:	CAN GND					
	By means of	J101, the groun	d potential of	the module can be connected		
	to the ground line of the CAN bus					
J1:	Interlock					
	Open:	Open Loop:	No Alarm			
	-	Closed Loop:	Alarm			
	Closed:	Open Loop:	Alarm	(Default)		
	Closed Loop: No Alarm					
The jumper location is marked in the following Board I ayout						

The jumper location is marked in the following Board Layout

2) Board Layout



3)	Rotary Switches a) Type #: b) Instance #:	Type Number Selection (3 Bit): Range: 07 Instance Number Selection (4 Bit): Range: 015				
4)	Front Panel					
	Push Button Change M	ode:	Toggles between operation modes LOCAL and REMOTE			
	Push Button RESET :		Resets Micro Controller and - via CAN Bus – VFPS Heidenhain Readout Modules and VFPS Temperature Monitors			
	Red LED:		off: No Time-out on: Time-out			
	Green LED:		off: Operation Mode LOCAL on: Operation Mode REMOTE			
	LEMO Connectors:		Interlock (BBL3 system Input) Jumper J1 open: Closed Loop generates Alarr Jumper J1 closed: Open Loop generates Alarr BBL3 alarm potential free switched output Closed for non alarm status			

5) Switch Numbers in H1 Forward Proton Spectrometer

Switch Nr.	Detector
0	P64H
1	P80H
2	P80V
3	P90V
4	P220
5	P226

6) VFPS Watch Dog Supervision System

VFPS Watch Dog

Motor Power-on Condition:

PON[n] = /REMOTE or REMOTE & /WDALARM & SWON[n]