DLTS RESULTS HAMBURG

Workshop on Defect Analysis in Radiation Damaged Silicon Detectors

> Hamburg, 23./24. August 2006 Frank Hönniger

The I center – can explain 85% from the damage after ⁶⁰Co-gammas

Detected by DLTS investigations in highly irradiated diodes (> 10 Mrad)

$$\mathbf{N}_{\mathrm{T}}^{\mathrm{DLTS}}(\mathrm{T}) = \mathbf{N}_{\mathrm{TE}} - \mathbf{n}_{\mathrm{E}}(\mathrm{T})$$

$$n_{E}(T) = N_{TE} * \frac{c_{n}(T) * n + e_{p}}{e_{n}(T) + e_{p}(T) + c_{n}(T) * n + c_{p}(T) * p}$$

with
$$c_{n,p}(T) = \sigma_{n,p}(T) * v_{th,n,p}(T);$$

$$e_{n,p}(T) = c_{n,p}(T) * N_{C,V}(T) * \exp(\frac{E_T(T) - E_{C,V}}{k_b T})$$

- Ea = Ec 0.545 eV
- σ_n = (1.7±0.2)x10⁻¹⁵ cm²

• $\sigma_p = (9 \pm 1) \times 10^{-14} \text{ cm}^2 \text{ - from } N_T^{DLTS}(T)$

Formation of the I-defect is suppressed in oxygen rich materials

DLTS spectra before and after 1 Mrad γ -irradiation U_R=-20V, U_P=-0.5V

The IO₂ and TDD

Czochralski (Cz) material: Sumitomo-Sitix <100>, n/P, 1.2 kΩcm

Direct measurement of capture cross-section for electrons at 60K

High-resolution DLTS spectra performed at 62K during - isothermal annealing at 120°C

Isothermal annealing at 120°C

Time constants for decrease of $[IO_2]$ and increase of $[C_iO_i]$ are identical within 10%.

(29min : 26min)

The IO₂ and TDD

Direct measurement of the TDD electron capture crosssection performed at 60K.

IO₂ in EPI

Epi/Cz: <111>, n/P, 50 Ω cm, **25**, **50**, **75** μ m on 300 μ m Cz-substrate, CiS process

Carbon concentration for all materials at detection limit [C] $\approx 5.7 \cdot 10^{15}$ cm⁻³

SIMS-measurements: A.Barcz, ITME

Irradiation: 23 GeV protons

50, 75 µm epi: defect at 58K

 T_W = 200 ms, tp= 100 ms U_R=-20V, U_P=-0.1V

IO₂ in EPI an MCZ

DLTS Spectra

EPI DO:

- Φ_{eq} = 8.2 x 10¹¹ cm⁻² p⁺ 26 MeV
- U_R= -20V, U_P=-0.1V
- T_w= 200ms, T_P= 100ms

MCZ:

- Φ_{eq} = 4.6 x 10¹¹ cm⁻² p⁺ 26 MeV
- U_R= -20V, U_P=-5V

DLTS Spectra

EPI standard:

- Φ_{eq} = 8.0 x 10¹¹ cm⁻² p⁺ 26 MeV
- U_R= -20V, U_P=-0.1V
- T_w= 200ms, T_P= 100ms

EPI standard (backside):

- Φ_{eq} = 8.0 x 10¹¹ cm⁻² p⁺ 26 MeV
- U_R= -80V, U_P=-60V
- T_w= 200ms, T_P= 100ms

Depth profil IO₂

 $[O_i] = 1 \cdot 10^{17} \text{ cm}^{-3}$

spectra after electron injection of DOFZ – diodes irradiated with 4 Mrad annealed at 250°C.

annealing out of V_2 and formation of X

[O_i]= 1 · 10¹⁷ cm⁻³ 4 VV(-/0) ٠ Fit VV 3 conc. [10¹⁰/cm³] 2 1 0 0 500 1000 1500 2000 t [min]

Time dependence of V_2 concentration in DOFZ-diodes during annealing at 250°C.

annealing of V₂ $N_t = N_0 \bullet \exp\left(-\frac{t-t_0}{\tau}\right)$

X - Defect

For $k = 1/\tau$ \longrightarrow $k = a \cdot x^b$ with $b \approx 1.5$

 \Rightarrow Non linear dependence of [X] on [O_i]

X - Defect

Summary

- I center is one of the most important defects responsible for macroscopic performance of the detectors
- IO₂-defect gives an indirect hint on dimer concentration of the material
- X-defect shows a non linear dependance on [Oi]
- In combination with other results (TSC) X defect can be associated with V₂O₂