SFB 676, Project Section B6

STRONG INTERACTIONS AND NEW PHYSICS AT THE LHC

Thomas Schörner-Sadenius

Universität Hamburg, IExpPh

DESY, 26 October 2006

BACKGROUND

> Title: Strong Interactions and New Physics at the LHC

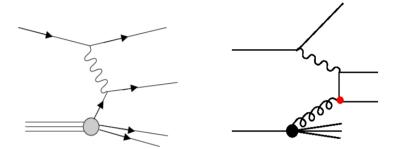
> Background and aim:

- Strong interaction least well understood building block of Standard Model.
- Still good progress recently by experimental (HERA) and theoretical efforts.
- In-depth understanding of strong force particularly important for search and interpretation of new physics at the LHC.
 - → understand better the strong force and implement knowledge in LHC data analysis and interpretation
- Fruitful collaboration of experimentalists and theorists expected.

> People involved in the project section:

- Project leaders J. Bartels (theory) and R. Klanner (experiment)
- Theory:L. Motyka (PostDoc), F. Schwennsen (PhD)
- Experiment: J. Sztuk (PostDoc), TSS (PostDoc), T. Theedt (PhD), A. Bonato (PhD), several diploma students
- Expecting input and contributions from other interested theorists and experimentalists from DESY, CERN, ...

WORK PLAN

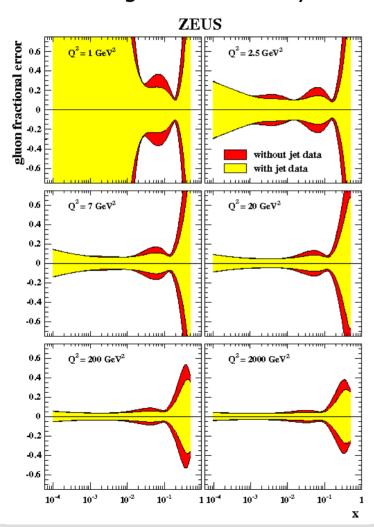

- (i) Precision measurement of the parton distributions in the proton including a reliable estimation of its uncertainties.
- (ii) Experimental and theoretical studies of the QCD radiation in the domain of high parton densities at low parton momenta.
- (iii) Understanding of final states with large rapdity gaps.
- (iv) Study of the impact of multiple (secondary) interactions and of underlying events.
- (v) Study of jet algorithms at high transverse energies optimizing the information from the tracking detectors and the calorimeter.

PRECISION MEASUREMENTS OF PDFs

- > HERA: PDFs (with uncertainties) typically from structure function F₂:
 - Large uncertainties at high gluon-x > 0.1; correlation between α_S and gluon.

$$\frac{\partial F_2(x,Q^2)}{\partial \ln Q^2} \approx \alpha_S(Q^2)g(x,Q^2)$$

- > Use of jet events (DIS and γp)
 - would allow decoupling of α_s and gluon;
 - allows access to different x ranges;
 - allows direct access to gluon density.



- > Last ZEUS NLO QCD fit (DESY-05-050) reduced gluon errors significantly.
 - see next slide.
- > Next steps: Input more final states data:
 - Charm and beauty data (heavy flavour structure functions F_2^{cc} , F_2^{bb} , directly sensitive to gluon density),
 - more and multidifferential jet data,
 - charged current data with polarized e[±] beam (also full HERA-II statistics for NC),
 - F_I at HERA, W,Z at LHC (next slide)

PRECISION MEASUREMENTS OF PDFs

> ZEUS NLO QCD Fit with(out) jets:

- fractional gluon uncertainty

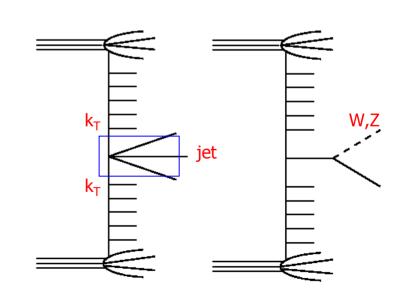
> F₁ at HERA

- longitudinal structure function directly sensitive to QCD effects
- F_L measurement will be performed at end of HERA running in 2007.

> W,Z at the LHC

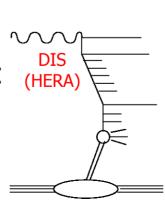
- Cross-sections for W, Z production are among the most precise measurements at the LHC.
- Also theo. predictions quite precise, and sensitive to proton PDFs.
- Using cross-section ratios might help reduce unsertainties.

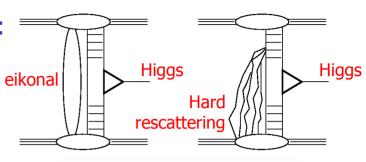
PRECISION MEASUREMENTS OF PDFs

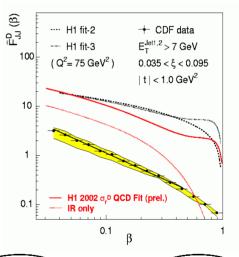

> "Forward jets" and parton dynamics in the proton

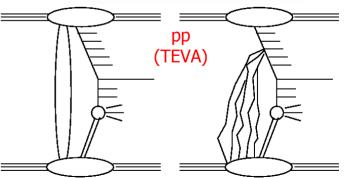
- Deviation from collinear factorisation observed in HERA data; but theoretical situation unsatisfactory: BFKL, resolved photons, higher orders, ...?
- New theory approach based on NLO BFKL evolution; theorists working on combination of ingredients (cast everything into Monte Carlo?)
- Preparing more studies in HERA-II data.

Photon impact factor BFKL jet vertex

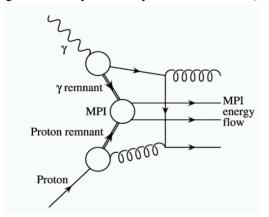

> NLO k_T factorisation at the LHC

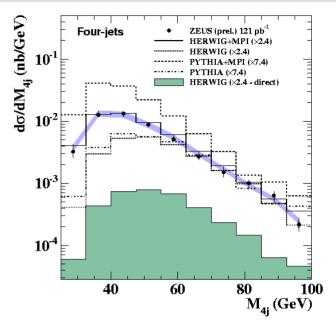

- regions at HERA where k_T factorisation seems advantageous.
- at LHC jets at smallish k_T and x test case.
- Also W,Z production interesting (will be needed for detector calibration)
- Currently being worked on (F. Schwennsen).




LARGE RAPIDITY GAPS

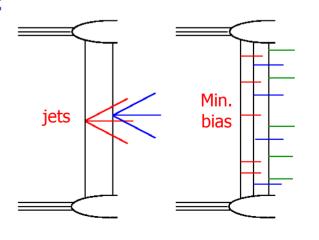
- > Hot issue: LHC double-diffractive Higgs production:
 - Tagging of protons would allow precise Higgs mass determination (MeV!).
 - Durham: Eikonal model for treatment of soft rescattering.
 - But dynamics not accurately modelled?
 - → try more complete "hard rescattering"
 - → better estimate of (small) Higgs Xsection?
- > Evidence: large factor between HERA and TEVATRON diffractive dijets:
 - Factor 5-10 needed to bring data to agreement.
 - Shape of distributions in agreement?
- > Possible approach:
 - study dPDFs at HERA and LHC
 - using for example dijets
 - H1 has published dPDFs.
 - ZEUS measurement in publication process.





MULTIPLE INTERACTIONS AT HERA+LHC

- > Multiple interactions, the underlying event (UE)
 - will play major role in many analysis at the LHC
 - at HERA: jets in photoproduction, diffraction

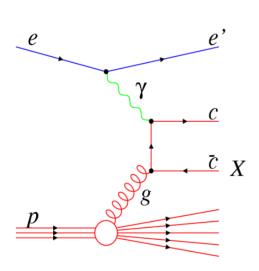


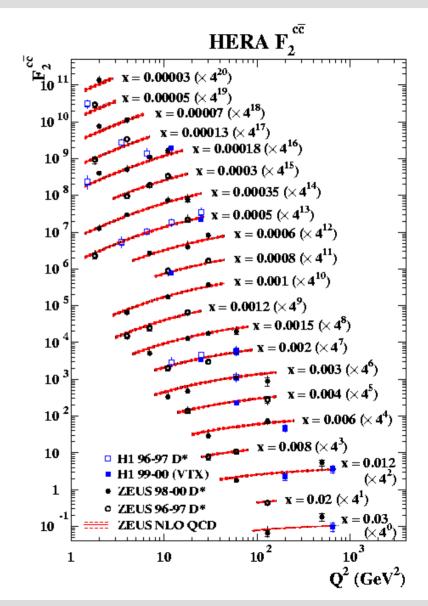
- > Expected at the LHC (and partly tested at TEVATRON):
 - Underlying event in minimum-bias events
 - Effect on jets: partons from different interactions?
 - Effects on Drell-Yan events, etc.
 - Background to new physics (6 b jets events ...)

> Activities:

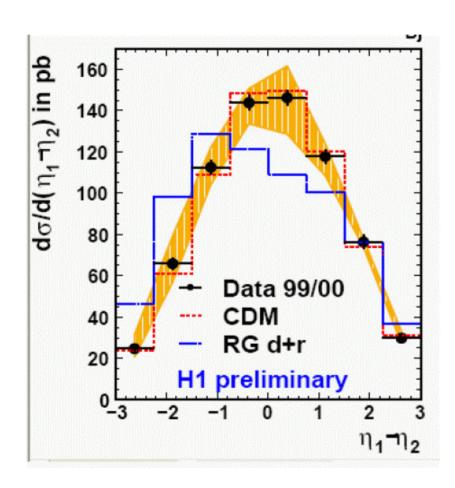
- Measurements of MPI and UE at ZEUS and CMS
- Theory: Handling of parton-jet relation? Modelling?
 - Deliver constraints to MC builders.

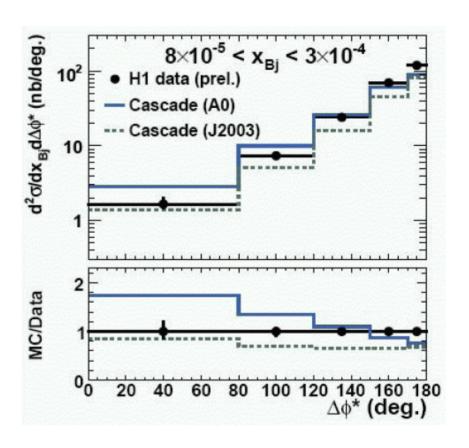
PROJECT SECTION PLANS (SUMMARY)

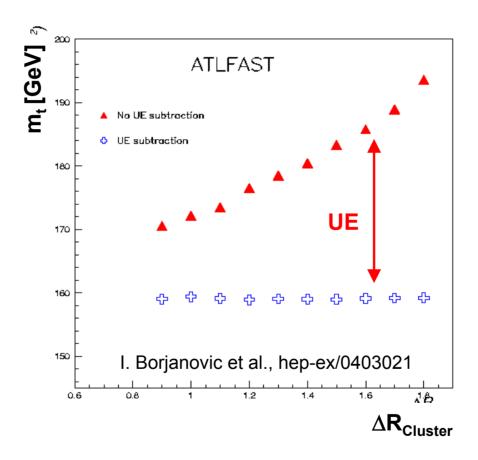

- > Precision measurements of PDFs, understanding of parton dynamics (i):
 - Large progress in measurements for x values up to 0.1.
 - Now using final states (jets, charm, F_I, CC, W,Z at LHC) to reduce errors.
 - forward jets at HERA: deviations from coll. factorisation? BFKL? MC at NLO?
 - $-k_T$ factorisation in NLO at LHC: jets? W,Z \rightarrow detector calibration?
- > Large Rapidity Gaps (LRG) (iii):
 - Eikonal model for double-diffractive Higgs production at LHC receives large attention; alternative approach based on hard rescattering by project members.
 - Evidence for necessity: Factor 5-10 between HERA and Tevatron diffractive dijets!
 - Study dPDFs at HERA and LHC with different approaches.
- > Multiple Interactions and the "Underlying Event" (iv):
 - Multiple interactions are an important issue for many physics processes at LHC.
 - Evidence at HERA: Jets in γp , diffractive final states.
 - Expected at the LHC: underlying events, jets from multiple interactions, ...
 Question of modelling in MC programs.


UH

BACKUP




F₂^{cc} AND F₂^{bb}



k_T FAKTORISATION AT HERA

UNDERLYING EVENT AND MPI

