Hadronic Working Group: Reference Analyses
Plans, draft, discussion

Alex Tapper (Imperial)
Christian Autermann (Hamburg)

Hadronic SUSY searches working meeting April 2, 2009
Analysis Strategy in a Nutshell

- Systematically cover all important basic signature searches:
 - Reference Analyses

- Control and measure the primary backgrounds directly from the data:
 - Data Driven Bkg. Methods: redundancy and complementarity are crucial.

- Develop robust, simple, and convincing analysis strategies for first searches:
 - Robustness comes before sophistication and Flexibility is more important than (model) optimization

- Understand the basics physics objects: MET, jets, leptons, photons (including trigger):
 - SUSY Physics Commissioning
Reference Analyses

Reference analyses are deliverables from the SUSY group

- They are both *common and critical*
- We want to treat them as such
 - Complete and thorough coverage
 - Fully explored and cross-checked

This is a team effort

- There are a lot of *issues* and a lot of *approaches*; also a lot that *has been* and *is being* done
- This work (done, being done, to be done) needs to be put together
- The following is a first step to “feed” the *discussion*
- We want to *document* it with contributions from all experts

Reference analyses are not the only analyses

- Other ideas are very welcome
- But we (as CMS) have to make sure that *at least* these (reference) analyses are fully covered

Frederic Ronga, March 26th
We don’t know what to expect. Hence, we must be as generic as possible! → Categorize basic signatures in bins of the fundamental objects

"#Jets vs. #Leptons vs. #Photons" Search Matrix

<table>
<thead>
<tr>
<th># of Jets + # Photons</th>
<th>0l</th>
<th>1l</th>
<th>2l (SS)</th>
<th>2l (OS)</th>
<th>>=3l</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>=4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3rd Dimension:
“MET-like variable” > X GeV (e.g. 200 GeV for MET).
or a scan in this variable

Signature Management:
Hadronic working group:
- Hadronic topology including photons (GMSB)

Leptonic working group:
- Leptonic topologies

Needs also overall coordination between the working groups!
RA1: Exclusive n-jet analysis (e.g. di-jet)

- $Z \rightarrow \text{invs}$ and QCD are important backgrounds, the relative importance depends on n
- QCD suppression using kinematic variables like α_T

RA2: Inclusive 3+X jet analysis (overlaps with RA1)

- All backgrounds (QCD, $Z \rightarrow \text{invs}$, $tt\bar{t}$) are important
- QCD is dominated by jet mismeasurements causing MET less depending on badly modeled additional radiations

RA3: Di-photon analysis (GMSB)

- QCD jets faking photons is dominated background
- Electron-photon mis-identification
- Electro-weak processes $W\gamma$, $Z\gamma$
List of issues and questions

- Signature – defines the analysis
- Trigger and skims
- Event cleaning
- Jet, MET pre-selection (loose) and selection
- Any additional selection (kinematic, \(\tau\), b, lepton veto, ...)
- Cross cleaning
- Background list and determination methods
- Control sample
- Critical commissioning issues
- Others? ... → Your input!

→ Example: 3+X jet inclusive analysis
This is the most sensitive analysis, where a lot of effort has already been put into!

- **Signature**: ≥ 3 jets, 0 leptons, MET control regions, e.g.:
 - low MET (QCD factorization method)
 - <3 jets (QCD jet-smear-method)
 - $\gamma, W, Z\rightarrow \mu\mu$ (Z→invisible)

- **Trigger**
 - explicit list of triggers, backup trigger, for control samples
 - signal efficiency, background reduction, noise sensitivity
 - development and study of new MHT trigger

- **Skims**
 - small sample but loose selection
 - must include all signal and background control regions

►► Studies needed ← SUSY Commissioning Group
• **Object selection**: (e.g. PTDR cuts on uncalib. jets)

 \[\text{jet1: } p_T > 180 \text{ GeV, jet2: } p_T > 110 \text{ GeV, jet3: } p_T > 30 \text{ GeV,} \]
 \[\text{MET > 200 GeV, } (M_T - \text{jet1 } p_T) > 500 \text{ GeV,} \ldots \]

 - MET, MHT, HT? Calo, particle flow, track-corrected?
 - lepton veto

• **Cross cleaning**
 - jets, electrons, photons, muons, taus
 - lepton veto

• **Event Cleaning**
 - cosmics, beam halo, detector noise, punch-through
 - event charge and EM fractions, primary vertex, timing studies
 - pile-up, instantaneous luminosity dep. on MET, lepton veto?
• **QCD background determination:**
 → Smearing method: 1. derive smear-function (γ-jet, Z-jet, di-jet)
 2. Apply to data-events with ~no MET
 3. Comparison with control sample
 → Factorization method: Calculating the amount of QCD in
 signal region from control regions, consider correlation uncert.
 → Compare methods

Z→invisible background determination
 → using γ-jets, replace γ: Studied background, and systematics
 → Z/W→ muon(s): Uncertainties due to statistics, lepton eff., ...
 → Compare methods

• **ttbar background determination**
 → template from data, estimate lepton mis-identification
 efficiencies from data, concentrate on tau mis-ID

• **Putting the analysis together**
 → combining the methods in one framework

►► More work and new people needed!
Conclusion

This is a proposal, open for input and discussion

- There has already a lot been done, there is still a lot to do
- Need to cover all issues for each signature, and put all efforts together
- Please give us feedback:
 - **Hadronic** analyses: Alex & Christian
 - **Leptonic** analyses: David & Frederic

Next steps / milestones:

- Summary at the next general SUSY meeting, April 7
- Document with all contributions (internal note, TWiki)
- Reference analyses workshop during Physics Days, May 11-15